skip to main content


Search for: All records

Creators/Authors contains: "Du, Xi-Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.

     
    more » « less
  2. While Li ion batteries are intended to be operated within a mild temperature window, their structural and chemical complexity could lead to unanticipated local electrochemical events that could cause extreme temperature spikes, which, in turn, could trigger more undesired and sophisticated reactions in the system. Visualizing and understanding the response of battery electrode materials to thermal abuse conditions could potentially offer a knowledge basis for the prevention and mitigation of the safety hazards. Here we show a comprehensive investigation of thermally driven chemomechanical interplay in a Li 0.5 Ni 0.6 Mn 0.2 Co 0.2 O 2 (charged NMC622) cathode material. We report that, at the early stage of the thermal abuse, oxygen release and internal Li migration occur concurrently, and are accompanied by mechanical disintegration at the mesoscale. At the later stage, Li protrusions are observed on the secondary particle surface due to the limited lithium solubility in non-layered lattices. The extraction of both oxygen and lithium from the host material at elevated temperature could influence the chemistry and safety at the cell level via rearrangement of the electron and ion diffusion pathways, reduction of the coulombic efficiency, and/or causing an internal short circuit that could provoke a thermal runaway. 
    more » « less